/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2022 Intel Corporation */ #include #include #include #include #include #include #include #include #include "idpf_ethdev.h" #include "idpf_rxtx.h" #define IDPF_TX_SINGLE_Q "tx_single" #define IDPF_RX_SINGLE_Q "rx_single" #define IDPF_VPORT "vport" rte_spinlock_t idpf_adapter_lock; /* A list for all adapters, one adapter matches one PCI device */ struct idpf_adapter_list idpf_adapter_list; bool idpf_adapter_list_init; static const char * const idpf_valid_args[] = { IDPF_TX_SINGLE_Q, IDPF_RX_SINGLE_Q, IDPF_VPORT, NULL }; uint32_t idpf_supported_speeds[] = { RTE_ETH_SPEED_NUM_NONE, RTE_ETH_SPEED_NUM_10M, RTE_ETH_SPEED_NUM_100M, RTE_ETH_SPEED_NUM_1G, RTE_ETH_SPEED_NUM_2_5G, RTE_ETH_SPEED_NUM_5G, RTE_ETH_SPEED_NUM_10G, RTE_ETH_SPEED_NUM_20G, RTE_ETH_SPEED_NUM_25G, RTE_ETH_SPEED_NUM_40G, RTE_ETH_SPEED_NUM_50G, RTE_ETH_SPEED_NUM_56G, RTE_ETH_SPEED_NUM_100G, RTE_ETH_SPEED_NUM_200G }; static const uint64_t idpf_map_hena_rss[] = { [IDPF_HASH_NONF_UNICAST_IPV4_UDP] = RTE_ETH_RSS_NONFRAG_IPV4_UDP, [IDPF_HASH_NONF_MULTICAST_IPV4_UDP] = RTE_ETH_RSS_NONFRAG_IPV4_UDP, [IDPF_HASH_NONF_IPV4_UDP] = RTE_ETH_RSS_NONFRAG_IPV4_UDP, [IDPF_HASH_NONF_IPV4_TCP_SYN_NO_ACK] = RTE_ETH_RSS_NONFRAG_IPV4_TCP, [IDPF_HASH_NONF_IPV4_TCP] = RTE_ETH_RSS_NONFRAG_IPV4_TCP, [IDPF_HASH_NONF_IPV4_SCTP] = RTE_ETH_RSS_NONFRAG_IPV4_SCTP, [IDPF_HASH_NONF_IPV4_OTHER] = RTE_ETH_RSS_NONFRAG_IPV4_OTHER, [IDPF_HASH_FRAG_IPV4] = RTE_ETH_RSS_FRAG_IPV4, /* IPv6 */ [IDPF_HASH_NONF_UNICAST_IPV6_UDP] = RTE_ETH_RSS_NONFRAG_IPV6_UDP, [IDPF_HASH_NONF_MULTICAST_IPV6_UDP] = RTE_ETH_RSS_NONFRAG_IPV6_UDP, [IDPF_HASH_NONF_IPV6_UDP] = RTE_ETH_RSS_NONFRAG_IPV6_UDP, [IDPF_HASH_NONF_IPV6_TCP_SYN_NO_ACK] = RTE_ETH_RSS_NONFRAG_IPV6_TCP, [IDPF_HASH_NONF_IPV6_TCP] = RTE_ETH_RSS_NONFRAG_IPV6_TCP, [IDPF_HASH_NONF_IPV6_SCTP] = RTE_ETH_RSS_NONFRAG_IPV6_SCTP, [IDPF_HASH_NONF_IPV6_OTHER] = RTE_ETH_RSS_NONFRAG_IPV6_OTHER, [IDPF_HASH_FRAG_IPV6] = RTE_ETH_RSS_FRAG_IPV6, /* L2 Payload */ [IDPF_HASH_L2_PAYLOAD] = RTE_ETH_RSS_L2_PAYLOAD }; static const uint64_t idpf_ipv4_rss = RTE_ETH_RSS_NONFRAG_IPV4_UDP | RTE_ETH_RSS_NONFRAG_IPV4_TCP | RTE_ETH_RSS_NONFRAG_IPV4_SCTP | RTE_ETH_RSS_NONFRAG_IPV4_OTHER | RTE_ETH_RSS_FRAG_IPV4; static const uint64_t idpf_ipv6_rss = RTE_ETH_RSS_NONFRAG_IPV6_UDP | RTE_ETH_RSS_NONFRAG_IPV6_TCP | RTE_ETH_RSS_NONFRAG_IPV6_SCTP | RTE_ETH_RSS_NONFRAG_IPV6_OTHER | RTE_ETH_RSS_FRAG_IPV6; struct rte_idpf_xstats_name_off { char name[RTE_ETH_XSTATS_NAME_SIZE]; unsigned int offset; }; static const struct rte_idpf_xstats_name_off rte_idpf_stats_strings[] = { {"rx_bytes", offsetof(struct virtchnl2_vport_stats, rx_bytes)}, {"rx_unicast_packets", offsetof(struct virtchnl2_vport_stats, rx_unicast)}, {"rx_multicast_packets", offsetof(struct virtchnl2_vport_stats, rx_multicast)}, {"rx_broadcast_packets", offsetof(struct virtchnl2_vport_stats, rx_broadcast)}, {"rx_dropped_packets", offsetof(struct virtchnl2_vport_stats, rx_discards)}, {"rx_errors", offsetof(struct virtchnl2_vport_stats, rx_errors)}, {"rx_unknown_protocol_packets", offsetof(struct virtchnl2_vport_stats, rx_unknown_protocol)}, {"tx_bytes", offsetof(struct virtchnl2_vport_stats, tx_bytes)}, {"tx_unicast_packets", offsetof(struct virtchnl2_vport_stats, tx_unicast)}, {"tx_multicast_packets", offsetof(struct virtchnl2_vport_stats, tx_multicast)}, {"tx_broadcast_packets", offsetof(struct virtchnl2_vport_stats, tx_broadcast)}, {"tx_dropped_packets", offsetof(struct virtchnl2_vport_stats, tx_discards)}, {"tx_error_packets", offsetof(struct virtchnl2_vport_stats, tx_errors)}}; #define IDPF_NB_XSTATS (sizeof(rte_idpf_stats_strings) / \ sizeof(rte_idpf_stats_strings[0])) static int idpf_dev_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete) { struct idpf_vport *vport = dev->data->dev_private; struct rte_eth_link new_link; unsigned int i; memset(&new_link, 0, sizeof(new_link)); /* initialize with default value */ new_link.link_speed = vport->link_up ? RTE_ETH_SPEED_NUM_UNKNOWN : RTE_ETH_SPEED_NUM_NONE; /* update in case a match */ for (i = 0; i < RTE_DIM(idpf_supported_speeds); i++) { if (vport->link_speed == idpf_supported_speeds[i]) { new_link.link_speed = vport->link_speed; break; } } new_link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX; new_link.link_status = vport->link_up ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN; new_link.link_autoneg = (dev->data->dev_conf.link_speeds & RTE_ETH_LINK_SPEED_FIXED) ? RTE_ETH_LINK_FIXED : RTE_ETH_LINK_AUTONEG; return rte_eth_linkstatus_set(dev, &new_link); } static int idpf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *adapter = vport->adapter; dev_info->max_rx_queues = adapter->caps.max_rx_q; dev_info->max_tx_queues = adapter->caps.max_tx_q; dev_info->min_rx_bufsize = IDPF_MIN_BUF_SIZE; dev_info->max_rx_pktlen = vport->max_mtu + IDPF_ETH_OVERHEAD; dev_info->max_mtu = vport->max_mtu; dev_info->min_mtu = RTE_ETHER_MIN_MTU; dev_info->hash_key_size = vport->rss_key_size; dev_info->reta_size = vport->rss_lut_size; dev_info->flow_type_rss_offloads = IDPF_RSS_OFFLOAD_ALL; dev_info->rx_offload_capa = RTE_ETH_RX_OFFLOAD_IPV4_CKSUM | RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM | RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM | RTE_ETH_RX_OFFLOAD_TIMESTAMP | RTE_ETH_RX_OFFLOAD_SCATTER; dev_info->tx_offload_capa = RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM | RTE_ETH_TX_OFFLOAD_SCTP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_TSO | RTE_ETH_TX_OFFLOAD_MULTI_SEGS | RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_free_thresh = IDPF_DEFAULT_TX_FREE_THRESH, .tx_rs_thresh = IDPF_DEFAULT_TX_RS_THRESH, }; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_free_thresh = IDPF_DEFAULT_RX_FREE_THRESH, }; dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = IDPF_MAX_RING_DESC, .nb_min = IDPF_MIN_RING_DESC, .nb_align = IDPF_ALIGN_RING_DESC, }; dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = IDPF_MAX_RING_DESC, .nb_min = IDPF_MIN_RING_DESC, .nb_align = IDPF_ALIGN_RING_DESC, }; return 0; } static int idpf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct idpf_vport *vport = dev->data->dev_private; /* mtu setting is forbidden if port is start */ if (dev->data->dev_started) { PMD_DRV_LOG(ERR, "port must be stopped before configuration"); return -EBUSY; } if (mtu > vport->max_mtu) { PMD_DRV_LOG(ERR, "MTU should be less than %d", vport->max_mtu); return -EINVAL; } vport->max_pkt_len = mtu + IDPF_ETH_OVERHEAD; return 0; } static const uint32_t * idpf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_ICMP, RTE_PTYPE_UNKNOWN }; return ptypes; } static uint64_t idpf_get_mbuf_alloc_failed_stats(struct rte_eth_dev *dev) { uint64_t mbuf_alloc_failed = 0; struct idpf_rx_queue *rxq; int i = 0; for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; mbuf_alloc_failed += __atomic_load_n(&rxq->rx_stats.mbuf_alloc_failed, __ATOMIC_RELAXED); } return mbuf_alloc_failed; } static int idpf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct idpf_vport *vport = (struct idpf_vport *)dev->data->dev_private; struct virtchnl2_vport_stats *pstats = NULL; int ret; ret = idpf_vc_stats_query(vport, &pstats); if (ret == 0) { uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) ? 0 : RTE_ETHER_CRC_LEN; idpf_vport_stats_update(&vport->eth_stats_offset, pstats); stats->ipackets = pstats->rx_unicast + pstats->rx_multicast + pstats->rx_broadcast - pstats->rx_discards; stats->opackets = pstats->tx_broadcast + pstats->tx_multicast + pstats->tx_unicast; stats->ierrors = pstats->rx_errors; stats->imissed = pstats->rx_discards; stats->oerrors = pstats->tx_errors + pstats->tx_discards; stats->ibytes = pstats->rx_bytes; stats->ibytes -= stats->ipackets * crc_stats_len; stats->obytes = pstats->tx_bytes; dev->data->rx_mbuf_alloc_failed = idpf_get_mbuf_alloc_failed_stats(dev); stats->rx_nombuf = dev->data->rx_mbuf_alloc_failed; } else { PMD_DRV_LOG(ERR, "Get statistics failed"); } return ret; } static void idpf_reset_mbuf_alloc_failed_stats(struct rte_eth_dev *dev) { struct idpf_rx_queue *rxq; int i; for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; __atomic_store_n(&rxq->rx_stats.mbuf_alloc_failed, 0, __ATOMIC_RELAXED); } } static int idpf_dev_stats_reset(struct rte_eth_dev *dev) { struct idpf_vport *vport = (struct idpf_vport *)dev->data->dev_private; struct virtchnl2_vport_stats *pstats = NULL; int ret; ret = idpf_vc_stats_query(vport, &pstats); if (ret != 0) return ret; /* set stats offset base on current values */ vport->eth_stats_offset = *pstats; idpf_reset_mbuf_alloc_failed_stats(dev); return 0; } static int idpf_dev_xstats_reset(struct rte_eth_dev *dev) { idpf_dev_stats_reset(dev); return 0; } static int idpf_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n) { struct idpf_vport *vport = (struct idpf_vport *)dev->data->dev_private; struct virtchnl2_vport_stats *pstats = NULL; unsigned int i; int ret; if (n < IDPF_NB_XSTATS) return IDPF_NB_XSTATS; if (!xstats) return 0; ret = idpf_vc_stats_query(vport, &pstats); if (ret) { PMD_DRV_LOG(ERR, "Get statistics failed"); return 0; } idpf_vport_stats_update(&vport->eth_stats_offset, pstats); /* loop over xstats array and values from pstats */ for (i = 0; i < IDPF_NB_XSTATS; i++) { xstats[i].id = i; xstats[i].value = *(uint64_t *)(((char *)pstats) + rte_idpf_stats_strings[i].offset); } return IDPF_NB_XSTATS; } static int idpf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned int limit) { unsigned int i; if (xstats_names) for (i = 0; i < IDPF_NB_XSTATS; i++) { snprintf(xstats_names[i].name, sizeof(xstats_names[i].name), "%s", rte_idpf_stats_strings[i].name); } return IDPF_NB_XSTATS; } static int idpf_config_rss_hf(struct idpf_vport *vport, uint64_t rss_hf) { uint64_t hena = 0; uint16_t i; /** * RTE_ETH_RSS_IPV4 and RTE_ETH_RSS_IPV6 can be considered as 2 * generalizations of all other IPv4 and IPv6 RSS types. */ if (rss_hf & RTE_ETH_RSS_IPV4) rss_hf |= idpf_ipv4_rss; if (rss_hf & RTE_ETH_RSS_IPV6) rss_hf |= idpf_ipv6_rss; for (i = 0; i < RTE_DIM(idpf_map_hena_rss); i++) { if (idpf_map_hena_rss[i] & rss_hf) hena |= BIT_ULL(i); } /** * At present, cp doesn't process the virtual channel msg of rss_hf configuration, * tips are given below. */ if (hena != vport->rss_hf) PMD_DRV_LOG(WARNING, "Updating RSS Hash Function is not supported at present."); return 0; } static int idpf_init_rss(struct idpf_vport *vport) { struct rte_eth_rss_conf *rss_conf; struct rte_eth_dev_data *dev_data; uint16_t i, nb_q; int ret = 0; dev_data = vport->dev_data; rss_conf = &dev_data->dev_conf.rx_adv_conf.rss_conf; nb_q = dev_data->nb_rx_queues; if (rss_conf->rss_key == NULL) { for (i = 0; i < vport->rss_key_size; i++) vport->rss_key[i] = (uint8_t)rte_rand(); } else if (rss_conf->rss_key_len != vport->rss_key_size) { PMD_INIT_LOG(ERR, "Invalid RSS key length in RSS configuration, should be %d", vport->rss_key_size); return -EINVAL; } else { rte_memcpy(vport->rss_key, rss_conf->rss_key, vport->rss_key_size); } for (i = 0; i < vport->rss_lut_size; i++) vport->rss_lut[i] = i % nb_q; vport->rss_hf = IDPF_DEFAULT_RSS_HASH_EXPANDED; ret = idpf_vport_rss_config(vport); if (ret != 0) PMD_INIT_LOG(ERR, "Failed to configure RSS"); return ret; } static int idpf_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *adapter = vport->adapter; uint16_t idx, shift; int ret = 0; uint16_t i; if (adapter->caps.rss_caps == 0 || dev->data->nb_rx_queues == 0) { PMD_DRV_LOG(DEBUG, "RSS is not supported"); return -ENOTSUP; } if (reta_size != vport->rss_lut_size) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number of hardware can " "support (%d)", reta_size, vport->rss_lut_size); return -EINVAL; } for (i = 0; i < reta_size; i++) { idx = i / RTE_ETH_RETA_GROUP_SIZE; shift = i % RTE_ETH_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) vport->rss_lut[i] = reta_conf[idx].reta[shift]; } /* send virtchnl ops to configure RSS */ ret = idpf_vc_rss_lut_set(vport); if (ret) PMD_INIT_LOG(ERR, "Failed to configure RSS lut"); return ret; } static int idpf_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *adapter = vport->adapter; uint16_t idx, shift; int ret = 0; uint16_t i; if (adapter->caps.rss_caps == 0 || dev->data->nb_rx_queues == 0) { PMD_DRV_LOG(DEBUG, "RSS is not supported"); return -ENOTSUP; } if (reta_size != vport->rss_lut_size) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number of hardware can " "support (%d)", reta_size, vport->rss_lut_size); return -EINVAL; } ret = idpf_vc_rss_lut_get(vport); if (ret) { PMD_DRV_LOG(ERR, "Failed to get RSS LUT"); return ret; } for (i = 0; i < reta_size; i++) { idx = i / RTE_ETH_RETA_GROUP_SIZE; shift = i % RTE_ETH_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) reta_conf[idx].reta[shift] = vport->rss_lut[i]; } return 0; } static int idpf_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *adapter = vport->adapter; int ret = 0; if (adapter->caps.rss_caps == 0 || dev->data->nb_rx_queues == 0) { PMD_DRV_LOG(DEBUG, "RSS is not supported"); return -ENOTSUP; } if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) { PMD_DRV_LOG(DEBUG, "No key to be configured"); goto skip_rss_key; } else if (rss_conf->rss_key_len != vport->rss_key_size) { PMD_DRV_LOG(ERR, "The size of hash key configured " "(%d) doesn't match the size of hardware can " "support (%d)", rss_conf->rss_key_len, vport->rss_key_size); return -EINVAL; } rte_memcpy(vport->rss_key, rss_conf->rss_key, vport->rss_key_size); ret = idpf_vc_rss_key_set(vport); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to configure RSS key"); return ret; } skip_rss_key: ret = idpf_config_rss_hf(vport, rss_conf->rss_hf); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to configure RSS hash"); return ret; } return 0; } static uint64_t idpf_map_general_rss_hf(uint64_t config_rss_hf, uint64_t last_general_rss_hf) { uint64_t valid_rss_hf = 0; uint16_t i; for (i = 0; i < RTE_DIM(idpf_map_hena_rss); i++) { uint64_t bit = BIT_ULL(i); if (bit & config_rss_hf) valid_rss_hf |= idpf_map_hena_rss[i]; } if (valid_rss_hf & idpf_ipv4_rss) valid_rss_hf |= last_general_rss_hf & RTE_ETH_RSS_IPV4; if (valid_rss_hf & idpf_ipv6_rss) valid_rss_hf |= last_general_rss_hf & RTE_ETH_RSS_IPV6; return valid_rss_hf; } static int idpf_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *adapter = vport->adapter; int ret = 0; if (adapter->caps.rss_caps == 0 || dev->data->nb_rx_queues == 0) { PMD_DRV_LOG(DEBUG, "RSS is not supported"); return -ENOTSUP; } ret = idpf_vc_rss_hash_get(vport); if (ret) { PMD_DRV_LOG(ERR, "Failed to get RSS hf"); return ret; } rss_conf->rss_hf = idpf_map_general_rss_hf(vport->rss_hf, vport->last_general_rss_hf); if (!rss_conf->rss_key) return 0; ret = idpf_vc_rss_key_get(vport); if (ret) { PMD_DRV_LOG(ERR, "Failed to get RSS key"); return ret; } if (rss_conf->rss_key_len > vport->rss_key_size) rss_conf->rss_key_len = vport->rss_key_size; rte_memcpy(rss_conf->rss_key, vport->rss_key, rss_conf->rss_key_len); return 0; } static int idpf_dev_configure(struct rte_eth_dev *dev) { struct idpf_vport *vport = dev->data->dev_private; struct rte_eth_conf *conf = &dev->data->dev_conf; struct idpf_adapter *adapter = vport->adapter; int ret; if (conf->link_speeds & RTE_ETH_LINK_SPEED_FIXED) { PMD_INIT_LOG(ERR, "Setting link speed is not supported"); return -ENOTSUP; } if (conf->txmode.mq_mode != RTE_ETH_MQ_TX_NONE) { PMD_INIT_LOG(ERR, "Multi-queue TX mode %d is not supported", conf->txmode.mq_mode); return -ENOTSUP; } if (conf->lpbk_mode != 0) { PMD_INIT_LOG(ERR, "Loopback operation mode %d is not supported", conf->lpbk_mode); return -ENOTSUP; } if (conf->dcb_capability_en != 0) { PMD_INIT_LOG(ERR, "Priority Flow Control(PFC) if not supported"); return -ENOTSUP; } if (conf->intr_conf.lsc != 0) { PMD_INIT_LOG(ERR, "LSC interrupt is not supported"); return -ENOTSUP; } if (conf->intr_conf.rxq != 0) { PMD_INIT_LOG(ERR, "RXQ interrupt is not supported"); return -ENOTSUP; } if (conf->intr_conf.rmv != 0) { PMD_INIT_LOG(ERR, "RMV interrupt is not supported"); return -ENOTSUP; } if (adapter->caps.rss_caps != 0 && dev->data->nb_rx_queues != 0) { ret = idpf_init_rss(vport); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to init rss"); return ret; } } else { PMD_INIT_LOG(ERR, "RSS is not supported."); return -1; } vport->max_pkt_len = (dev->data->mtu == 0) ? IDPF_DEFAULT_MTU : dev->data->mtu + IDPF_ETH_OVERHEAD; return 0; } static int idpf_config_rx_queues_irqs(struct rte_eth_dev *dev) { struct idpf_vport *vport = dev->data->dev_private; uint16_t nb_rx_queues = dev->data->nb_rx_queues; return idpf_vport_irq_map_config(vport, nb_rx_queues); } static int idpf_start_queues(struct rte_eth_dev *dev) { struct idpf_rx_queue *rxq; struct idpf_tx_queue *txq; int err = 0; int i; for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (txq == NULL || txq->tx_deferred_start) continue; err = idpf_tx_queue_start(dev, i); if (err != 0) { PMD_DRV_LOG(ERR, "Fail to start Tx queue %u", i); return err; } } for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (rxq == NULL || rxq->rx_deferred_start) continue; err = idpf_rx_queue_start(dev, i); if (err != 0) { PMD_DRV_LOG(ERR, "Fail to start Rx queue %u", i); return err; } } return err; } static int idpf_dev_start(struct rte_eth_dev *dev) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter *base = vport->adapter; struct idpf_adapter_ext *adapter = IDPF_ADAPTER_TO_EXT(base); uint16_t num_allocated_vectors = base->caps.num_allocated_vectors; uint16_t req_vecs_num; int ret; req_vecs_num = IDPF_DFLT_Q_VEC_NUM; if (req_vecs_num + adapter->used_vecs_num > num_allocated_vectors) { PMD_DRV_LOG(ERR, "The accumulated request vectors' number should be less than %d", num_allocated_vectors); ret = -EINVAL; goto err_vec; } ret = idpf_vc_vectors_alloc(vport, req_vecs_num); if (ret != 0) { PMD_DRV_LOG(ERR, "Failed to allocate interrupt vectors"); goto err_vec; } adapter->used_vecs_num += req_vecs_num; ret = idpf_config_rx_queues_irqs(dev); if (ret != 0) { PMD_DRV_LOG(ERR, "Failed to configure irqs"); goto err_irq; } ret = idpf_start_queues(dev); if (ret != 0) { PMD_DRV_LOG(ERR, "Failed to start queues"); goto err_startq; } idpf_set_rx_function(dev); idpf_set_tx_function(dev); ret = idpf_vc_vport_ena_dis(vport, true); if (ret != 0) { PMD_DRV_LOG(ERR, "Failed to enable vport"); goto err_vport; } if (idpf_dev_stats_reset(dev)) PMD_DRV_LOG(ERR, "Failed to reset stats"); return 0; err_vport: idpf_stop_queues(dev); err_startq: idpf_vport_irq_unmap_config(vport, dev->data->nb_rx_queues); err_irq: idpf_vc_vectors_dealloc(vport); err_vec: return ret; } static int idpf_dev_stop(struct rte_eth_dev *dev) { struct idpf_vport *vport = dev->data->dev_private; if (dev->data->dev_started == 0) return 0; idpf_vc_vport_ena_dis(vport, false); idpf_stop_queues(dev); idpf_vport_irq_unmap_config(vport, dev->data->nb_rx_queues); idpf_vc_vectors_dealloc(vport); return 0; } static int idpf_dev_close(struct rte_eth_dev *dev) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_adapter_ext *adapter = IDPF_ADAPTER_TO_EXT(vport->adapter); idpf_dev_stop(dev); idpf_vport_deinit(vport); adapter->cur_vports &= ~RTE_BIT32(vport->devarg_id); adapter->cur_vport_nb--; dev->data->dev_private = NULL; adapter->vports[vport->sw_idx] = NULL; rte_free(vport); return 0; } static const struct eth_dev_ops idpf_eth_dev_ops = { .dev_configure = idpf_dev_configure, .dev_close = idpf_dev_close, .rx_queue_setup = idpf_rx_queue_setup, .tx_queue_setup = idpf_tx_queue_setup, .dev_infos_get = idpf_dev_info_get, .dev_start = idpf_dev_start, .dev_stop = idpf_dev_stop, .link_update = idpf_dev_link_update, .rx_queue_start = idpf_rx_queue_start, .tx_queue_start = idpf_tx_queue_start, .rx_queue_stop = idpf_rx_queue_stop, .tx_queue_stop = idpf_tx_queue_stop, .rx_queue_release = idpf_dev_rx_queue_release, .tx_queue_release = idpf_dev_tx_queue_release, .mtu_set = idpf_dev_mtu_set, .dev_supported_ptypes_get = idpf_dev_supported_ptypes_get, .stats_get = idpf_dev_stats_get, .stats_reset = idpf_dev_stats_reset, .reta_update = idpf_rss_reta_update, .reta_query = idpf_rss_reta_query, .rss_hash_update = idpf_rss_hash_update, .rss_hash_conf_get = idpf_rss_hash_conf_get, .xstats_get = idpf_dev_xstats_get, .xstats_get_names = idpf_dev_xstats_get_names, .xstats_reset = idpf_dev_xstats_reset, }; static int insert_value(struct idpf_devargs *devargs, uint16_t id) { uint16_t i; /* ignore duplicate */ for (i = 0; i < devargs->req_vport_nb; i++) { if (devargs->req_vports[i] == id) return 0; } if (devargs->req_vport_nb >= RTE_DIM(devargs->req_vports)) { PMD_INIT_LOG(ERR, "Total vport number can't be > %d", IDPF_MAX_VPORT_NUM); return -EINVAL; } devargs->req_vports[devargs->req_vport_nb] = id; devargs->req_vport_nb++; return 0; } static const char * parse_range(const char *value, struct idpf_devargs *devargs) { uint16_t lo, hi, i; int n = 0; int result; const char *pos = value; result = sscanf(value, "%hu%n-%hu%n", &lo, &n, &hi, &n); if (result == 1) { if (lo >= IDPF_MAX_VPORT_NUM) return NULL; if (insert_value(devargs, lo) != 0) return NULL; } else if (result == 2) { if (lo > hi || hi >= IDPF_MAX_VPORT_NUM) return NULL; for (i = lo; i <= hi; i++) { if (insert_value(devargs, i) != 0) return NULL; } } else { return NULL; } return pos + n; } static int parse_vport(const char *key, const char *value, void *args) { struct idpf_devargs *devargs = args; const char *pos = value; devargs->req_vport_nb = 0; if (*pos == '[') pos++; while (1) { pos = parse_range(pos, devargs); if (pos == NULL) { PMD_INIT_LOG(ERR, "invalid value:\"%s\" for key:\"%s\", ", value, key); return -EINVAL; } if (*pos != ',') break; pos++; } if (*value == '[' && *pos != ']') { PMD_INIT_LOG(ERR, "invalid value:\"%s\" for key:\"%s\", ", value, key); return -EINVAL; } return 0; } static int parse_bool(const char *key, const char *value, void *args) { int *i = args; char *end; int num; errno = 0; num = strtoul(value, &end, 10); if (errno == ERANGE || (num != 0 && num != 1)) { PMD_INIT_LOG(ERR, "invalid value:\"%s\" for key:\"%s\", value must be 0 or 1", value, key); return -EINVAL; } *i = num; return 0; } static int idpf_parse_devargs(struct rte_pci_device *pci_dev, struct idpf_adapter_ext *adapter, struct idpf_devargs *idpf_args) { struct rte_devargs *devargs = pci_dev->device.devargs; struct rte_kvargs *kvlist; int i, ret; idpf_args->req_vport_nb = 0; if (devargs == NULL) return 0; kvlist = rte_kvargs_parse(devargs->args, idpf_valid_args); if (kvlist == NULL) { PMD_INIT_LOG(ERR, "invalid kvargs key"); return -EINVAL; } /* check parsed devargs */ if (adapter->cur_vport_nb + idpf_args->req_vport_nb > IDPF_MAX_VPORT_NUM) { PMD_INIT_LOG(ERR, "Total vport number can't be > %d", IDPF_MAX_VPORT_NUM); ret = -EINVAL; goto bail; } for (i = 0; i < idpf_args->req_vport_nb; i++) { if (adapter->cur_vports & RTE_BIT32(idpf_args->req_vports[i])) { PMD_INIT_LOG(ERR, "Vport %d has been created", idpf_args->req_vports[i]); ret = -EINVAL; goto bail; } } ret = rte_kvargs_process(kvlist, IDPF_VPORT, &parse_vport, idpf_args); if (ret != 0) goto bail; ret = rte_kvargs_process(kvlist, IDPF_TX_SINGLE_Q, &parse_bool, &adapter->base.is_tx_singleq); if (ret != 0) goto bail; ret = rte_kvargs_process(kvlist, IDPF_RX_SINGLE_Q, &parse_bool, &adapter->base.is_rx_singleq); if (ret != 0) goto bail; bail: rte_kvargs_free(kvlist); return ret; } static struct idpf_vport * idpf_find_vport(struct idpf_adapter_ext *adapter, uint32_t vport_id) { struct idpf_vport *vport = NULL; int i; for (i = 0; i < adapter->cur_vport_nb; i++) { vport = adapter->vports[i]; if (vport->vport_id != vport_id) continue; else return vport; } return vport; } static void idpf_handle_event_msg(struct idpf_vport *vport, uint8_t *msg, uint16_t msglen) { struct virtchnl2_event *vc_event = (struct virtchnl2_event *)msg; struct rte_eth_dev_data *data = vport->dev_data; struct rte_eth_dev *dev = &rte_eth_devices[data->port_id]; if (msglen < sizeof(struct virtchnl2_event)) { PMD_DRV_LOG(ERR, "Error event"); return; } switch (vc_event->event) { case VIRTCHNL2_EVENT_LINK_CHANGE: PMD_DRV_LOG(DEBUG, "VIRTCHNL2_EVENT_LINK_CHANGE"); vport->link_up = !!(vc_event->link_status); vport->link_speed = vc_event->link_speed; idpf_dev_link_update(dev, 0); break; default: PMD_DRV_LOG(ERR, " unknown event received %u", vc_event->event); break; } } static void idpf_handle_virtchnl_msg(struct idpf_adapter_ext *adapter_ex) { struct idpf_adapter *adapter = &adapter_ex->base; struct idpf_dma_mem *dma_mem = NULL; struct idpf_hw *hw = &adapter->hw; struct virtchnl2_event *vc_event; struct idpf_ctlq_msg ctlq_msg; enum idpf_mbx_opc mbx_op; struct idpf_vport *vport; uint16_t pending = 1; uint32_t vc_op; int ret; while (pending) { ret = idpf_vc_ctlq_recv(hw->arq, &pending, &ctlq_msg); if (ret) { PMD_DRV_LOG(INFO, "Failed to read msg from virtual channel, ret: %d", ret); return; } rte_memcpy(adapter->mbx_resp, ctlq_msg.ctx.indirect.payload->va, IDPF_DFLT_MBX_BUF_SIZE); mbx_op = rte_le_to_cpu_16(ctlq_msg.opcode); vc_op = rte_le_to_cpu_32(ctlq_msg.cookie.mbx.chnl_opcode); adapter->cmd_retval = rte_le_to_cpu_32(ctlq_msg.cookie.mbx.chnl_retval); switch (mbx_op) { case idpf_mbq_opc_send_msg_to_peer_pf: case idpf_mbq_opc_send_msg_to_peer_drv: if (vc_op == VIRTCHNL2_OP_EVENT) { if (ctlq_msg.data_len < sizeof(struct virtchnl2_event)) { PMD_DRV_LOG(ERR, "Error event"); return; } vc_event = (struct virtchnl2_event *)adapter->mbx_resp; vport = idpf_find_vport(adapter_ex, vc_event->vport_id); if (!vport) { PMD_DRV_LOG(ERR, "Can't find vport."); return; } idpf_handle_event_msg(vport, adapter->mbx_resp, ctlq_msg.data_len); } else { if (vc_op == adapter->pend_cmd) notify_cmd(adapter, adapter->cmd_retval); else PMD_DRV_LOG(ERR, "command mismatch, expect %u, get %u", adapter->pend_cmd, vc_op); PMD_DRV_LOG(DEBUG, " Virtual channel response is received," "opcode = %d", vc_op); } goto post_buf; default: PMD_DRV_LOG(DEBUG, "Request %u is not supported yet", mbx_op); } } post_buf: if (ctlq_msg.data_len) dma_mem = ctlq_msg.ctx.indirect.payload; else pending = 0; ret = idpf_vc_ctlq_post_rx_buffs(hw, hw->arq, &pending, &dma_mem); if (ret && dma_mem) idpf_free_dma_mem(hw, dma_mem); } static void idpf_dev_alarm_handler(void *param) { struct idpf_adapter_ext *adapter = param; idpf_handle_virtchnl_msg(adapter); rte_eal_alarm_set(IDPF_ALARM_INTERVAL, idpf_dev_alarm_handler, adapter); } static struct virtchnl2_get_capabilities req_caps = { .csum_caps = VIRTCHNL2_CAP_TX_CSUM_L3_IPV4 | VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP | VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP | VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP | VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP | VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP | VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP | VIRTCHNL2_CAP_TX_CSUM_GENERIC | VIRTCHNL2_CAP_RX_CSUM_L3_IPV4 | VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP | VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP | VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP | VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP | VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP | VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP | VIRTCHNL2_CAP_RX_CSUM_GENERIC, .rss_caps = VIRTCHNL2_CAP_RSS_IPV4_TCP | VIRTCHNL2_CAP_RSS_IPV4_UDP | VIRTCHNL2_CAP_RSS_IPV4_SCTP | VIRTCHNL2_CAP_RSS_IPV4_OTHER | VIRTCHNL2_CAP_RSS_IPV6_TCP | VIRTCHNL2_CAP_RSS_IPV6_UDP | VIRTCHNL2_CAP_RSS_IPV6_SCTP | VIRTCHNL2_CAP_RSS_IPV6_OTHER | VIRTCHNL2_CAP_RSS_IPV4_AH | VIRTCHNL2_CAP_RSS_IPV4_ESP | VIRTCHNL2_CAP_RSS_IPV4_AH_ESP | VIRTCHNL2_CAP_RSS_IPV6_AH | VIRTCHNL2_CAP_RSS_IPV6_ESP | VIRTCHNL2_CAP_RSS_IPV6_AH_ESP, .other_caps = VIRTCHNL2_CAP_WB_ON_ITR }; static int idpf_adapter_ext_init(struct rte_pci_device *pci_dev, struct idpf_adapter_ext *adapter) { struct idpf_adapter *base = &adapter->base; struct idpf_hw *hw = &base->hw; int ret = 0; hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; hw->hw_addr_len = pci_dev->mem_resource[0].len; hw->back = base; hw->vendor_id = pci_dev->id.vendor_id; hw->device_id = pci_dev->id.device_id; hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id; strncpy(adapter->name, pci_dev->device.name, PCI_PRI_STR_SIZE); rte_memcpy(&base->caps, &req_caps, sizeof(struct virtchnl2_get_capabilities)); ret = idpf_adapter_init(base); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to init adapter"); goto err_adapter_init; } rte_eal_alarm_set(IDPF_ALARM_INTERVAL, idpf_dev_alarm_handler, adapter); adapter->max_vport_nb = adapter->base.caps.max_vports; adapter->vports = rte_zmalloc("vports", adapter->max_vport_nb * sizeof(*adapter->vports), 0); if (adapter->vports == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate vports memory"); ret = -ENOMEM; goto err_vports_alloc; } adapter->cur_vports = 0; adapter->cur_vport_nb = 0; adapter->used_vecs_num = 0; return ret; err_vports_alloc: rte_eal_alarm_cancel(idpf_dev_alarm_handler, adapter); idpf_adapter_deinit(base); err_adapter_init: return ret; } static uint16_t idpf_vport_idx_alloc(struct idpf_adapter_ext *ad) { uint16_t vport_idx; uint16_t i; for (i = 0; i < ad->max_vport_nb; i++) { if (ad->vports[i] == NULL) break; } if (i == ad->max_vport_nb) vport_idx = IDPF_INVALID_VPORT_IDX; else vport_idx = i; return vport_idx; } static int idpf_dev_vport_init(struct rte_eth_dev *dev, void *init_params) { struct idpf_vport *vport = dev->data->dev_private; struct idpf_vport_param *param = init_params; struct idpf_adapter_ext *adapter = param->adapter; /* for sending create vport virtchnl msg prepare */ struct virtchnl2_create_vport create_vport_info; int ret = 0; dev->dev_ops = &idpf_eth_dev_ops; vport->adapter = &adapter->base; vport->sw_idx = param->idx; vport->devarg_id = param->devarg_id; memset(&create_vport_info, 0, sizeof(create_vport_info)); ret = idpf_vport_info_init(vport, &create_vport_info); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to init vport req_info."); goto err; } ret = idpf_vport_init(vport, &create_vport_info, dev->data); if (ret != 0) { PMD_INIT_LOG(ERR, "Failed to init vports."); goto err; } dev->data->mac_addrs = rte_zmalloc(NULL, RTE_ETHER_ADDR_LEN, 0); if (dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Cannot allocate mac_addr memory."); ret = -ENOMEM; goto err_mac_addrs; } rte_ether_addr_copy((struct rte_ether_addr *)vport->default_mac_addr, &dev->data->mac_addrs[0]); adapter->vports[param->idx] = vport; adapter->cur_vports |= RTE_BIT32(param->devarg_id); adapter->cur_vport_nb++; return 0; err_mac_addrs: adapter->vports[param->idx] = NULL; /* reset */ idpf_vport_deinit(vport); err: return ret; } static const struct rte_pci_id pci_id_idpf_map[] = { { RTE_PCI_DEVICE(IDPF_INTEL_VENDOR_ID, IDPF_DEV_ID_PF) }, { RTE_PCI_DEVICE(IDPF_INTEL_VENDOR_ID, IDPF_DEV_ID_SRIOV) }, { .vendor_id = 0, /* sentinel */ }, }; static struct idpf_adapter_ext * idpf_find_adapter_ext(struct rte_pci_device *pci_dev) { struct idpf_adapter_ext *adapter; int found = 0; if (pci_dev == NULL) return NULL; rte_spinlock_lock(&idpf_adapter_lock); TAILQ_FOREACH(adapter, &idpf_adapter_list, next) { if (strncmp(adapter->name, pci_dev->device.name, PCI_PRI_STR_SIZE) == 0) { found = 1; break; } } rte_spinlock_unlock(&idpf_adapter_lock); if (found == 0) return NULL; return adapter; } static void idpf_adapter_ext_deinit(struct idpf_adapter_ext *adapter) { rte_eal_alarm_cancel(idpf_dev_alarm_handler, adapter); idpf_adapter_deinit(&adapter->base); rte_free(adapter->vports); adapter->vports = NULL; } static int idpf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { struct idpf_vport_param vport_param; struct idpf_adapter_ext *adapter; struct idpf_devargs devargs; char name[RTE_ETH_NAME_MAX_LEN]; int i, retval; bool first_probe = false; if (!idpf_adapter_list_init) { rte_spinlock_init(&idpf_adapter_lock); TAILQ_INIT(&idpf_adapter_list); idpf_adapter_list_init = true; } adapter = idpf_find_adapter_ext(pci_dev); if (adapter == NULL) { first_probe = true; adapter = rte_zmalloc("idpf_adapter_ext", sizeof(struct idpf_adapter_ext), 0); if (adapter == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate adapter."); return -ENOMEM; } retval = idpf_adapter_ext_init(pci_dev, adapter); if (retval != 0) { PMD_INIT_LOG(ERR, "Failed to init adapter."); return retval; } rte_spinlock_lock(&idpf_adapter_lock); TAILQ_INSERT_TAIL(&idpf_adapter_list, adapter, next); rte_spinlock_unlock(&idpf_adapter_lock); } retval = idpf_parse_devargs(pci_dev, adapter, &devargs); if (retval != 0) { PMD_INIT_LOG(ERR, "Failed to parse private devargs"); goto err; } if (devargs.req_vport_nb == 0) { /* If no vport devarg, create vport 0 by default. */ vport_param.adapter = adapter; vport_param.devarg_id = 0; vport_param.idx = idpf_vport_idx_alloc(adapter); if (vport_param.idx == IDPF_INVALID_VPORT_IDX) { PMD_INIT_LOG(ERR, "No space for vport %u", vport_param.devarg_id); return 0; } snprintf(name, sizeof(name), "idpf_%s_vport_0", pci_dev->device.name); retval = rte_eth_dev_create(&pci_dev->device, name, sizeof(struct idpf_vport), NULL, NULL, idpf_dev_vport_init, &vport_param); if (retval != 0) PMD_DRV_LOG(ERR, "Failed to create default vport 0"); } else { for (i = 0; i < devargs.req_vport_nb; i++) { vport_param.adapter = adapter; vport_param.devarg_id = devargs.req_vports[i]; vport_param.idx = idpf_vport_idx_alloc(adapter); if (vport_param.idx == IDPF_INVALID_VPORT_IDX) { PMD_INIT_LOG(ERR, "No space for vport %u", vport_param.devarg_id); break; } snprintf(name, sizeof(name), "idpf_%s_vport_%d", pci_dev->device.name, devargs.req_vports[i]); retval = rte_eth_dev_create(&pci_dev->device, name, sizeof(struct idpf_vport), NULL, NULL, idpf_dev_vport_init, &vport_param); if (retval != 0) PMD_DRV_LOG(ERR, "Failed to create vport %d", vport_param.devarg_id); } } return 0; err: if (first_probe) { rte_spinlock_lock(&idpf_adapter_lock); TAILQ_REMOVE(&idpf_adapter_list, adapter, next); rte_spinlock_unlock(&idpf_adapter_lock); idpf_adapter_ext_deinit(adapter); rte_free(adapter); } return retval; } static int idpf_pci_remove(struct rte_pci_device *pci_dev) { struct idpf_adapter_ext *adapter = idpf_find_adapter_ext(pci_dev); uint16_t port_id; /* Ethdev created can be found RTE_ETH_FOREACH_DEV_OF through rte_device */ RTE_ETH_FOREACH_DEV_OF(port_id, &pci_dev->device) { rte_eth_dev_close(port_id); } rte_spinlock_lock(&idpf_adapter_lock); TAILQ_REMOVE(&idpf_adapter_list, adapter, next); rte_spinlock_unlock(&idpf_adapter_lock); idpf_adapter_ext_deinit(adapter); rte_free(adapter); return 0; } static struct rte_pci_driver rte_idpf_pmd = { .id_table = pci_id_idpf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING, .probe = idpf_pci_probe, .remove = idpf_pci_remove, }; /** * Driver initialization routine. * Invoked once at EAL init time. * Register itself as the [Poll Mode] Driver of PCI devices. */ RTE_PMD_REGISTER_PCI(net_idpf, rte_idpf_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_idpf, pci_id_idpf_map); RTE_PMD_REGISTER_KMOD_DEP(net_idpf, "* igb_uio | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_idpf, IDPF_TX_SINGLE_Q "=<0|1> " IDPF_RX_SINGLE_Q "=<0|1> " IDPF_VPORT "=[[-][,[-]][, ... ]]"); RTE_LOG_REGISTER_SUFFIX(idpf_logtype_init, init, NOTICE); RTE_LOG_REGISTER_SUFFIX(idpf_logtype_driver, driver, NOTICE);